7192 ETHERNET
ANYTHING I/O
MANUAL

Version 1.9
Table of Contents

GENERAL .. 1

DESCRIPTION ... 1

HARDWARE CONFIGURATION 2

- **GENERAL** ... 2
- **BREAKOUT POWER OPTION** 2
- **5V I/O TOLERANCE** 2
- **PRECONFIG PULL-UP ENABLE** 3
- **IP ADDRESS SELECTION** 3

CONNECTORS .. 4

- **CONNECTOR LOCATIONS AND DEFAULT JUMPER POSITIONS** 4
- **7192 I/O CONNECTOR PIN-OUT** 5
- **POWER CONNECTOR PIN-OUT** 7
- **JTAG CONNECTOR PIN-OUT** 7
- **FRAME GROUND CONNECTION** 7

OPERATION .. 8

- **FPGA** .. 8
- **FPGA PINOUT** .. 8
- **IP ADDRESS SELECTION** 8
- **HOST COMMUNICATION** 8
- **UDP** .. 8
- **LBP16** ... 8
- **WINDOWS ARP ISSUES** 8
- **CONFIGURATION** ... 9
- **FALLBACK** .. 9
- **EEPROM LAYOUT** 10
- **BITFILE FORMAT** 12
Table of Contents

OPERATION .. 8

- MESAFLASH ... 12
 - SETTING EEPROM IP ADDRESS 12
- FREE EEPROM SPACE .. 13
- FALLBACK INDICATION .. 13
- FAILURE TO CONFIGURE ... 13
- CLOCK SIGNALS ... 13
- LEDS ... 14
- PULLUP RESISTORS ... 14
- I/O LEVELS .. 14
- STARTUP I/O VOLTAGE .. 14
- INTERFACE CABLES .. 15
Table of Contents

SUPPLIED CONFIGURATIONS
- HOSTMOT2 ... 16
- 7I76X1D ... 16
- 7I76_7I74D .. 16
- G540X2D .. 16
- 7I77X2D .. 16
- 7I77_7I76D ... 16
- 7I77_7I74D ... 17
- 7I74X2D .. 17
- 7I78X2D .. 17
- PROB_RFX2D .. 17
- PIN FILES ... 17

REFERENCE INFORMATION
- LBP16
 - LBP16 COMMANDS .. 18
 - INFO AREA ... 19
 - INFO AREA MEMSIZES FORMAT 19
 - INFO AREA MEMRANGES FORMAT 20
 - INFO AREA ACCESS ... 21
 - 7I92 SUPPORTED MEMORY SPACES 22
 - SPACE0: HOSTMOT2 REGISTERS 22
 - SPACE1: ETHERNET CHIP ACCESS 24
 - SPACE2: ETHERNET EEPROM CHIP ACCESS 24
 - ETHERNET EEPROM LAYOUT 25
 - SPACE3: FPGA FLASH EEPROM CHIP ACCESS 27
 - FLASH MEMORY REGISTERS .. 27
 - SPACE4: LBP TIMER/UTIL REGISTERS 30
 - SPACE6: LBP STATUS/CONTROL REGISTERS 31
 - MEMORY SPACE 6 LAYOUT ... 31
 - ERROR REGISTER FORMAT 32
 - SPACE7: LBP READ ONLY INFORMATION 33
 - MEMORY SPACE 7 LAYOUT ... 33
 - ELBPCOM ... 34

SPECIFICATIONS .. 35

CARD DRAWING .. 36
GENERAL

DESCRIPTION

The MESA 7I92 is a low cost, general purpose, FPGA based programmable I/O card with 100 BaseT Ethernet host connection. The 7I92 that uses standard parallel port pinouts and connectors for compatibility with most parallel port interfaced motion control / CNC breakout cards/ multi axis step motor drives, allowing a motion control performance boost while retaining a reliable real time Ethernet interface. Unlike the parallel port that the 7I92 replaces, each I/O bit has individually programmable direction and function.

The 7I92 has a simplified UDP host data transfer systems that allows operation in real time and compatibility with standard networks. The 7I92 provides 34 I/O bits (17 per connector) All I/O bits are 5V tolerant and have pullup resistors. A power source option allows the 7I92 to supply 5V power to breakout boards if desired. This 5V power is protected by a PTC.

Firmware modules are provided for hardware step generation, quadrature encoder counting, PWM generation, digital I/O, Smart Serial remote I/O, BISS, SSI, SPI, UART interfaces and more. Configurations are available that are compatible with common breakout cards and multi axis step motor drives like the Gecko G540 and LeadshineMX3660/4660. All motion control firmware is open source and easily modified to support new functions or different mixes of functions.

In addition to standard parallel port breakouts, There are currently six 7I92 compatible breakout cards available from Mesa, the 7I74 through 7I78 and 7I85. The 7I76 is a step/dir oriented breakout with 5 axis of buffered step/dir outputs, one spindle encoder input, one isolated 0-10V analog spindle speed plus isolated direction and enable outputs, one RS-422 expansion port, 32 isolated 5-32V inputs and 16 isolated 5-32V 300 mA outputs. The 7I77 is a analog servo interface with 6 encoder inputs, 6 analog +-10V outputs, one RS-422 expansion port, 32 isolated 5-32V inputs, and 16 isolated 5-32V 300 mA outputs. The 7I92 supports two breakout cards so for example a 10 Axis step/dir configuration or 12 axis analog servo configuration is possible with a single 7I92 and two Mesa breakout cards.
HARDWARE CONFIGURATION

GENERAL

Hardware setup jumper positions assume that the 7I92 card is oriented in an upright position, that is, with the Ethernet connector towards the left and the I/O connectors towards the right.

CONNECTOR 5V POWER

The 7I92 has the option to supply 5V power from the to the breakout board. This option is used by all Mesa breakout boards to simplify wiring. The option uses 4 parallel cable signals that are normally used as grounds for supplying 5V to the remote breakout board (DB25 pins 22,23,24 and 25). These pins are AC bypassed on both the 7I92 and Mesa breakout cards so do not compromise AC signal integrity. The 5V power option is individually selectable for each of the two I/O connectors. The breakout 5V power is protected by per connector PTC devices so will not cause damage to the 7I92 or system if accidentally shorted. This option should only be enabled for Mesa breakout boards or boards specifically wired to accept 5V power on DB25 pins 22 through 25. When the option is disabled DB25 pins 22 through 25 are grounded. Jumper W3 sets the power option on header P1, and W4 sets the power option on DB25 connector P2.

<table>
<thead>
<tr>
<th>JUMPER</th>
<th>POS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3,W4</td>
<td>UP</td>
<td>BREAKOUT POWER ENABLED</td>
</tr>
<tr>
<td>W3,W4</td>
<td>DOWN</td>
<td>BREAKOUT POWER DISABLED (DEFAULT)</td>
</tr>
</tbody>
</table>

5V I/O TOLERANCE

The FPGA used on the 7I92 has a 4V absolute maximum input voltage specification. To allow interfacing with 5V inputs, the 7I92 has bus switches on all I/O pins. The bus switches work by turning off when the input voltage exceeds a preset threshold. The 5V I/O tolerance option is the default and should normally be left enabled.

For high speed applications where only 3.3V maximum signals are present and overshoot clamping is desired, the 5V I/O tolerance option can be disabled. W1 controls the 5V I/O tolerance option. When W1 is on the default UP position, 5V tolerance mode is enabled. When W1 is in the DOWN position, 5V tolerance mode is disabled. Note that W4 controls 5V tolerance on both I/O connectors.

PULLUP VOLTAGE

Jumper W1 also selects the I/O connector pull-up resistor voltage. When W1 is in the UP position the 4.7K I/O pullup resistor common is connected to 5V. When W1 is in the down position, The 4.7K I/O pullup resistor common is connected to 3.3V.
HARDWARE CONFIGURATION

IP ADDRESS SELECTION

The 7I92 has three options for selecting its IP address. These options are selected by Jumpers W5 and W6.

<table>
<thead>
<tr>
<th>W5</th>
<th>W6</th>
<th>IP ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWN</td>
<td>DOWN</td>
<td>FIXED 192.168.1.121 (DEFAULT)</td>
</tr>
<tr>
<td>DOWN</td>
<td>UP</td>
<td>FIXED FROM EEPROM</td>
</tr>
<tr>
<td>UP</td>
<td>DOWN</td>
<td>BOOTP</td>
</tr>
<tr>
<td>UP</td>
<td>UP</td>
<td>INVALID</td>
</tr>
</tbody>
</table>

Note: that the initial EEPROM IP address is set to 10.10.10.10 at Mesa, but can be changed to any address with the mesaflash utility.
CONNECTORS

CONNECTOR LOCATIONS AND DEFAULT JUMPER POSITIONS

(7192 version shown)
CONNECTORS

I/O CONNECTORS

The 7I92 has 2 I/O connectors, P1 and P2. Depending on 7I92 model P2 may be a DB25 female, DB25 male or 26 pin header. 7I92 IO P2 connector pinouts are as follows:

P2 FIRST I/O CONNECTOR PINOUT

<table>
<thead>
<tr>
<th>DB25 PIN</th>
<th>HDR PIN</th>
<th>FUNCTION</th>
<th>DB25 PIN</th>
<th>HDR PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>IO0</td>
<td>14</td>
<td>2</td>
<td>IO1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>IO2</td>
<td>15</td>
<td>4</td>
<td>IO3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>IO4</td>
<td>16</td>
<td>6</td>
<td>IO5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>IO6</td>
<td>17</td>
<td>8</td>
<td>IO7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>IO8</td>
<td>18</td>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>IO9</td>
<td>19</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>IO10</td>
<td>20</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>IO11</td>
<td>21</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>IO12</td>
<td>22</td>
<td>18</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>IO13</td>
<td>23</td>
<td>20</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>IO14</td>
<td>24</td>
<td>22</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>IO15</td>
<td>25</td>
<td>24</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>13</td>
<td>25</td>
<td>IO16</td>
<td>XX</td>
<td>26</td>
<td>GND or 5V</td>
</tr>
</tbody>
</table>
CONNECTORS

I/O CONNECTORS

P1 HDR26 CONNECTOR PINOUT

<table>
<thead>
<tr>
<th>HDR PIN</th>
<th>FUNCTION</th>
<th>HDR PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IO17</td>
<td>2</td>
<td>IO18</td>
</tr>
<tr>
<td>3</td>
<td>IO19</td>
<td>4</td>
<td>IO20</td>
</tr>
<tr>
<td>5</td>
<td>IO21</td>
<td>6</td>
<td>IO22</td>
</tr>
<tr>
<td>7</td>
<td>IO23</td>
<td>8</td>
<td>IO24</td>
</tr>
<tr>
<td>9</td>
<td>IO25</td>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>IO26</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>IO27</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>IO28</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>IO29</td>
<td>18</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>19</td>
<td>IO30</td>
<td>20</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>21</td>
<td>IO31</td>
<td>22</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>23</td>
<td>IO32</td>
<td>24</td>
<td>GND or 5V</td>
</tr>
<tr>
<td>25</td>
<td>IO33</td>
<td>26</td>
<td>GND or 5V</td>
</tr>
</tbody>
</table>

Note: 26 pin header P1 will match standard parallel port pin-out if terminated with flat cable 26 pin receptacle/DB25F cable with pin1s connected (and header pin 26 left open)

A cable kit is available from MESA to interface the 26 pin header to Mesa and general parallel port type breakout boards.
CONNECTORS

POWER CONNECTOR PINOUT

P3 is the 7192s power connector. P3 is a 3.5MM plug-in screw terminal block. P3 pinout is as follows:

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V TOP, SQUARE PAD</td>
</tr>
<tr>
<td>2</td>
<td>GND BOTTOM, ROUND PAD</td>
</tr>
</tbody>
</table>

JTAG CONNECTOR PINOUT

P4 is a JTAG programming connector. This is normally used only for debugging or if both EEPROM configurations have been corrupted. In case of corrupted EEPROM contents the EEPROM can be re-programmed using Xilinx’s Impact tool.

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMS</td>
</tr>
<tr>
<td>2</td>
<td>TDI</td>
</tr>
<tr>
<td>3</td>
<td>TDO</td>
</tr>
<tr>
<td>4</td>
<td>TCK</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>+3.3V</td>
</tr>
</tbody>
</table>

FRAME GROUND

The top left mounting hole (near the Ethernet jack) is the frame ground connection. This should be grounded to earth/frame ground for best ESD/EMI resistance.
OPERATION

FPGA

The 7I92 use a Xilinx Spartan6 XC6SLX9-TQ144 FPGA.

IP ADDRESS SELECTION

Initial communication with the 7I92 requires knowing its IP address. The 7I92 has 3 IP address options: Default, EEPROM, and Bootp, selected by jumpers W5 and W6. Default IP address is always 192.168.1.121. The EEPROM IP address is set by writing Ethernet EEPROM locations 0x20 and 0X22. BootP allows the 7I92 address to be set by a DHCP/BootP server. If BootP is chosen, the 7I92 will retry BootP requests at a ~1 Hz rate if the BootP server does not respond.

HOST COMMUNICATION

The 7I92 standard firmware is designed for low overhead real time communication with a host controller so implements a very simple set of IPV4 operations. These operations include ARP reply, ICMP echo reply, and UDP packet receive/send for host data communications. UDP is used so that the 7I92 can be used on a standard network with standard tools for non-real time applications. No fragmentation is allowed so maximum packet size is 1500 bytes.

UDP

All 7I92 data communication is done via UDP packets. The 7I92 socket number for UDP data communication is 27181. Read data is routed to the requesters port number. Under UDP, a simple register access protocol is used. This protocol is called LBP16.

LBP16

LBP16 allows read and write access to up to eight separate address spaces with different sizes and characteristics. Current firmware uses seven of these spaces. For efficiency, LBP16 allows access to blocks of registers at sequential increasing addresses. (Block transfers)

WINDOWS ARP ISSUES

Windows TCP stack has a characteristic that causes it to drop outgoing UDP packets when refreshing its ARP cache. Because of this you must either verify packet transmission via echoing data from the 7I92 for every transaction (reading RXUDPCount is suggested) and retrying failed transactions, or alternatively, setting up a static entry for the 7I92 in the ARP table. This is done with windows ARP command.
OPERATION

CONFIGURATION

The 7I92 is configured at power up by a SPI FLASH memory. This flash memory is an 16M bit chip that has space for two configuration files. Since all Ethernet logic on the 7I92 is in the FPGA, a problem with configuration means that Ethernet access will not be possible. For this reason there is a backup method to recover from FPGA boot failures, fallback.

FALLBACK

The 7I92 flash memory normally contains two configuration file images, A user image and a fallback image. If the primary user configuration is corrupted, the FPGA will load the fallback configuration so the flash memory image can be repaired remotely without having to resort to switching memories or JTAG programming.
OPERATION

EEPROM LAYOUT

The EEPROM used on the 7I92 for configuration storage is the M25P16. The M25P16 is a 16 M bit (2 M byte) EEPROM with 32 64K byte sectors. Configuration files are stored on sector boundaries to allow individual configuration file erasing and updating. Standard EEPROM sector layout is as follows:

The first half of M25P16 sector layout is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>BOOT BLOCK</td>
</tr>
<tr>
<td>0x1000</td>
<td>FALLBACK CONFIGURATION BLOCK 0</td>
</tr>
<tr>
<td>0x2000</td>
<td>FALLBACK CONFIGURATION BLOCK 1</td>
</tr>
<tr>
<td>0x3000</td>
<td>FALLBACK CONFIGURATION BLOCK 2</td>
</tr>
<tr>
<td>0x4000</td>
<td>FALLBACK CONFIGURATION BLOCK 3</td>
</tr>
<tr>
<td>0x5000</td>
<td>FALLBACK CONFIGURATION BLOCK 4</td>
</tr>
<tr>
<td>0x6000</td>
<td>FALLBACK CONFIGURATION BLOCK 5</td>
</tr>
<tr>
<td>0x7000</td>
<td>RESERVED</td>
</tr>
<tr>
<td>0x8000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x9000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0xA000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0xB000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0xC000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0xD000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0xE000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0xF000</td>
<td>UNUSED/FREE</td>
</tr>
</tbody>
</table>
OPERATION

EEPROM LAYOUT

The second half of M25P16 sector layout is as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100000</td>
<td>USER CONFIGURATION BLOCK 0</td>
</tr>
<tr>
<td>0x110000</td>
<td>USER CONFIGURATION BLOCK 1</td>
</tr>
<tr>
<td>0x120000</td>
<td>USER CONFIGURATION BLOCK 2</td>
</tr>
<tr>
<td>0x130000</td>
<td>USER CONFIGURATION BLOCK 3</td>
</tr>
<tr>
<td>0x140000</td>
<td>USER CONFIGURATION BLOCK 4</td>
</tr>
<tr>
<td>0x150000</td>
<td>USER CONFIGURATION BLOCK 5</td>
</tr>
<tr>
<td>0x160000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x170000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x180000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x190000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x1A0000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x1B0000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x1C0000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x1D0000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x1E0000</td>
<td>UNUSED/FREE</td>
</tr>
<tr>
<td>0x1F0000</td>
<td>UNUSED/FREE</td>
</tr>
</tbody>
</table>
OPERATION

BITFILE FORMAT

The configuration utilities expect standard FPGA bitfiles without any multiboot features enabled. If multiboot FPGA files are loaded they will likely cause a configuration failure. In addition for fallback to work, the -g next_config_register_write:disable, -g reset_on_error:enable and -g CRC:enable bitgen options must be set.

WARNING: Never write a bitfile that is not designed for a 7I92 into the 7I92s EEPROM as this will likely "brick" the 7I92 card and require the card to be returned to Mesa for repair.

MESAFLASH

Linux and Windows utility programs MESAFLASH are provided to write configuration files to the 7I92 EEPROM. These files depend on a simple SPI interface built into both the standard user FPGA bitfiles and the fallback bitfile. The MESAFLASH utilities expect standard FPGA bitfiles without any multiboot features enabled. If multiboot FPGA files are loaded they will likely cause a configuration failure.

If mesaflash is run with a -help command line argument it will print usage information.

The following examples assume the target 7I92 is using the ROM IP address of 192.168.1.121.

```
mesaflash --device 7I92 --write FPGAFILE.BIT
```

Writes a standard bitfile FPGAFILE.BIT to the user area of the EEPROM.

```
mesaflash --device 7I92 --verify FPGAFILE.BIT
```

Verifies the user EEPROM configuration against the bit file FPGAFILE.BIT.

```
mesaflash --device 7I92 --fallback --write FALLBACK.BIT
```

Writers the fallback EEPROM configuration to the fallback area of the EEPROM. In addition if the bootblock is not present in block 0 of the EEPROM, it re-writes the bootblock.

SETTING EEPROM IP ADDRESS

MESAFLASH can also write the EEPROM IP address of the 7I92:

```
MESAFLASH --device 7I92 --set ip=192.168.0.100
```

The above examples assume the 7I92 has its default ROM IP address (192.168.1.121). If the 7I92 is using another IP address, this must be specified on the command line with a --addr XX.xx.xx.xx command line argument.
OPERATION

FREE FLASH MEMORY SPACE

Fifteen 64K byte blocks of flash memory space are free when both user and fallback configurations are installed. These free blocks can be used for storing user data.

FALLBACK INDICATION

Mesa’s supplied fallback configurations blink the red INIT LED on the top right hand side of the card if the primary configuration fails and the fallback configuration loaded successfully. If this happens it means the user configuration is corrupted or not a proper configuration for the 7I92s FPGA. This can be fixed by running the configuration utility and re-writing the user configuration.

FAILURE TO CONFIGURE

The 7I92 should configure its FPGA within a fraction of a second of power application. If the FPGA card fails to configure, the red /DONE LED CR2 will remain illuminated. If this happens the 7I92s EEPROM must be re-programmed via the JTAG connector or (faster) JTAG FPGA load followed by Ethernet EEPROM update.

CLOCK SIGNALS

The 7I92 has a single 50 MHz clock signal from an on card crystal oscillator. The clock can be multiplied and divided by the FPGAs clock generator block to generate a wide range of internal clock signals. The 50 MHz clock is also used to generate the 25MHz clock for the Ethernet interface chip.
OPERATION

LEDS

The 7I92 has 4 FPGA driven user LEDs (User 0 through User 3 = Green), and 2 FPGA driven status LEDs (red) and a power LED. The user LEDs can be used for any purpose, and can be helpful as a simple debugging feature. A low output signal from the FPGA lights the LED. See the 7I92IO.PIN file for FPGA pin locations of the LED signals. The status LEDs reflect the state of the FPGA’s DONE, and /INIT pins. The /DONE LED lights until the FPGA is configured at power-up. The /INIT LED lights when the power on reset is asserted, when there has been a CRC error during configuration. When using Mesas configurations, the /INIT LED blinks when the fallback configuration has been loaded.

PULLUP RESISTORS

All I/O pins are provided with pull-up resistors to allow connection to open drain, open collector, or OPTO devices. These resistors have a value of 4.7K so have a maximum pull-up current of ~1.07 mA (5V pull-up) or ~.7 mA (3.3V pull-up).

IO LEVELS

The Xilinx FPGAs used on the 7I92 have programmable I/O levels for interfacing with different logic families. The 7I92 does not support use of the I/O standards that require input reference voltages. All standard Mesa configurations use LVTTL levels.

Note that even though the 7I92 can tolerate 5V signal inputs, its outputs will not swing to 5V. The outputs are push pull CMOS that will drive to the output supply rail of 3.3V. This is sufficient for TTL compatibility but may cause problems with some types of loads. For example when driving an LED that has its anode connected to 5V, in such devices as OPTO isolators and I/O module rack SSRs, the 3.3V high level may not completely turn the LED off. To avoid this problem, either drive loads that are ground referred, Use 3.3V as the VCC for VCC referred loads, or use open drain mode.

STARTUP I/O VOLTAGE

After power-up or system reset and before the the FPGA is configured, the pull-up resistors will pull all I/O signals to a high level. If the FPGA is used for motion control or controlling devices that could present a hazard when enabled, external circuitry should be designed so that this initial state (high) results in a safe condition.
OPERATION

INTERFACE CABLES

Mesa daughtercards use a male to male DB25 cable to interface to the 7I92. For noise immunity and signal fidelity it is suggested that only IEEE-1284 rated cables be used. IEEE-1284 rated cables have a twisted pair shield wire for each signal wire and an overall shield terminated in the metal connector shell. This results in much better performance than flat or NON-IEEE-1284 parallel port cables For short connections of less than 3 feet, flat cables can be used. No other type of cable should be used.

Mesa can supply IEEE-1284 cables tested with the 7I92 / daughtercard combination in 3, 6, and 10 foot lengths.

BREAKOUT POWER OPTION

When used with Mesa breakout/daughter cards, the 7I92 can supply up to 1A of 5V power to each of the daughter cards. This option is disabled by default to avoid possible damage to standard breakout boards, so must be specifically enabled for Mesa daughtercards. If you use this option you must verify that the interface cable does not tie the eight parallel port ground wires together as some cheap printer cables do. Mesa supplied IEEE-1284 cables are the best option for Mesa daughter cards and are guaranteed to work with the power option. Flat cables will work as well but have poorer noise immunity and signal fidelity.

PLUG AND GO KITS

Motion control kits with pre-programmed 7I92, interface cable, and daughtercard(s) are available to simplify system integration.
SUPPLIED CONFIGURATIONS

HOSTMOT2

All supplied configurations are part of the HostMot2 motion control firmware set. All HostMot2 firmware is open source and easily extendible to support new interfaces or different sets of interfaces embedded in one configuration. For detailed register level information on Hostmot2 firmware modules, see the regmap file in the hostmot2 source code directory.

7I76X1D

7I76X1D is a configuration intended to work with the 7I76 five axis step/dir daughtercard. It supports a single 7I76 daughtercard.

7I76_7I74D

7I76_7I74 is a configuration for a7I76 five axis step/dir daughtercard on P2 and a 7I74 eight channel RS-422 interface on P1. The 7I74 is configured with eight Smart Serial channels.

G540X2D

G540X2 is a configuration intended to work with two Gecko G540 four axis step motor drives. It includes eight hardware step generators, two PWM generators, four GPIO outputs, eight GPIO inputs, two charge pump drivers and a watchdog timer.

7I77X2D

7I77X2D is a configuration intended to work with the 7I77 six axis analog servo daughtercard. It will support two 7I77 daughtercards. It includes twelve encoder inputs, six smart serial interfaces (four used locally on the 7I77s and two fed through for additional remotes), a watchdog timer and GPIO.

7I77_7I76D

7I77_7I76D is a configuration intended to work with a7I77 six axis analog servo daughtercard on P2 a 7I76 daughtercard on P1.
SUPPLIED CONFIGURATIONS

7I77_7I74D

7I74_7I77D is a configuration intended to work with a 7I77 six axis analog servo daughter card on P2 and a 7I74 eight channel RS-422 interface daughter card on P1. It includes six encoder inputs, 14 smart serial interfaces (2 used on the 7I77 for 48 bit isolated field I/O and analog out), a watchdog timer and GPIO.

7I74X2D

7I74X2D is a configuration intended to work with two 7I74 RS-422 daughter cards. It includes sixteen smart serial interfaces allowing real time control of up to 784 digital I/O points, a watchdog timer and GPIO.

7I78X2D

7I78X2D is a configuration intended to work with the 7I78 four axis step/dir daughter card. It will support two 7I78 daughter cards, one on each of the 7I92s I/O connectors. The configuration includes eight hardware step generators, two PWM generators, two encoder inputs and two Smart Serial interfaces, a watchdog timer and GPIO.

PROB_RFX2D

The PROB_RFX2D configuration is a step/dir configuration intended to work with most common parallel port breakouts. Two breakouts are supported, one on each of the 7I92s I/O connectors. The configuration includes eight hardware step generators, two encoders with index, four PWM generators, a watchdog timer and GPIO.

PIN FILES

Each of the configurations has an associated file with file name extension .pin that describes the FPGA functions included in the configuration and the I/O pinout. These are plain text files that can be printed or viewed with any text editor.
LBP16 COMMANDS

LBP16 is a simple remote register access protocol to allow efficient register access over the Ethernet link. All LBP16 commands are 16 bits in length and have the following structure:

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>A</td>
<td>C</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>S</td>
<td>S</td>
<td>I</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- **W** Is the write bit (1 means write, 0 means read)
- **A** Is the "Includes Address" bit. If this is '1' the command is followed by a 16 bit address and the address pointer is loaded with this address. If this is 0 the current address pointer for the memory space is used. Each memory space has its own address pointer.
- **C** Indicates if memory space itself (C='0') or associated info area for the memory will be accessed (C= '1')
- **M** Is the 3 bit memory space specifier 000b through 111b
- **S** Is the transfer element size specifier (00b = 8 bits, 01b = 16 bits 10b = 32 bits and 11b = 64 bits)
- **I** Is the Increment address bit. If this is '1' the address pointer is incremented by the element transfer size (in bytes) after every transfer (’0’ is useful for FIFO transfers)
- **N** Is the transfer count in units of the selected size. 1 through 127. A transfer count of 0 is an error.

LBP16 read commands are followed by the 16 bit address (if the A bit is set). LBP16 Write commands are followed by the address (if bit A is set) and the data to be written. LBP16 Addresses are always byte addresses. LBP data and addresses are little endian so must be sent LSB first.
There are eight possible memory spaces in LBP16. Each memory space has an associated read only info area. The first entry has a cookie to verify correct access. The next two entries in the info area are the MemSizes word and the MemRanges word. Only 16 bit read access is allowed to the info area.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>COOKIE = 0X5A0N WHERE N = ADDRESS SPACE 0..7</td>
</tr>
<tr>
<td>0002</td>
<td>MEMSIZES</td>
</tr>
<tr>
<td>0004</td>
<td>MEMRANGES</td>
</tr>
<tr>
<td>0006</td>
<td>ADDRESS POINTER</td>
</tr>
<tr>
<td>0008</td>
<td>SPACENAME 0,1</td>
</tr>
<tr>
<td>000A</td>
<td>SPACENAME 2,3</td>
</tr>
<tr>
<td>000C</td>
<td>SPACENAME 4,5</td>
</tr>
<tr>
<td>000E</td>
<td>SPACENAME 6,7</td>
</tr>
</tbody>
</table>

INFO AREA MEMSIZES FORMAT

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>W Memory space is Writeable</td>
</tr>
<tr>
<td>14</td>
<td>T Is type: 01 = Register, 02 = Memory, 0E = EEPROM, 0F = Flash</td>
</tr>
<tr>
<td>13</td>
<td>T Is access types (bit 0 = 8 bit, bit 1 = 16 bit etc) so for example 0x06 means 16 bit and 32 bit operations allowed</td>
</tr>
</tbody>
</table>
REFERENCE INFORMATION

LBP16

INFO AREA MEMRANGES FORMAT

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

E Is erase block size
P Is Page size
S Ps address range

Ranges are 2^E, 2^P, 2^S. All sizes and ranges are in bytes. E and P are 0 for non-flash memory
REFERENCE INFORMATION

LBP16

INFO_AREA ACCESS

As discussed above, all memory spaces have an associated information area that describes the memory space. Information area data is all 16 bits and read-only. The hex command examples below are written in LSB first order for convenience. In the hex command examples, the NN is the count/increment field of the LBP16 command and the LLHH is the low and high bytes of the address.

Isp ace 0 read with address NN61LLHH HostMot2 space
Isp ace 0 read NN21

Isp ace 1 read with address NN65LLHH Ethernet chip space
Isp ace 1 read NN25

Isp ace 2 read with address NN69LLHH Ethernet EEPROM space
Isp ace 2 read NN29

Isp ace 3 read with address NN6DLLHH FPGA flash space
Isp ace 3 read NN2D

Isp ace 6 read with address NN79LLHH LBP16 R/W space
Isp ace 6 read NN39

Isp ace 7 read with address NN7DLLHH LBP16 R/O space
Isp ace 7 read NN3D
REFERENCE INFORMATION

LBP16

7I92 SUPPORTED MEMORY SPACES

The 7I92 firmware supports 6 address spaces. These will be described individually with example hexadecimal commands. The hex command examples below are written in LSB first order for convenience. In the hex command examples, the NN is the count/increment field of the LBP16 command and the LLHH is the low and high bytes of the address.

SPACE 0: HOSTMOT2 REGISTERS

This address space is the most important as it gives access to the FPGA I/O. This is a 64K byte address range space with 32 bit R/W access.

Space 0 read with address NN42LLHH
Space 0 write with address NNC2LLHH
Space 0 read NN02
Space 0 write NN82
REFERENCE INFORMATION

LBP16

SPACE 0: HOSTMOT2 REGISTERS
Example: read first 5 entries in hostmot2 IDROM:

85420004

85 ; 85 == NN = 5 | Inc bit (0x80) so address is incremented after each access
42 ; Read from space 0 with address included after command
00 ; LSB of address (IDROM starts at 0x0400)
04 ; MSB of address (IDROM starts at 0x0400)

Example: write 4 GPIO ports starting at 0x1000:

84C20010AAAAAAAABBBBBBBCCCCCCCCDDDDDDDDDD

84 ; 84 == NN = 4 | Inc bit so address is incremented after each access
C2 ; Write to space 0 with address included after command
00 ; LSB of address (GPIO starts at 0x1000)
10 ; MSB of address (GPIO starts at 0x1000)
AAAAAAA ; 32 bit data for GPIO port 0 at 0x1000
BBBBBBBB ; 32 bit data for GPIO port 0 at 0x1004
CCCCCCCC ; 32 bit data for GPIO port 0 at 0x1008
DDDDDDDD ; 32 bit data for GPIO port 0 at 0x100C

Note like all LBP16 data, write data is LS byte first
REFERENCE INFORMATION

LBP16

SPACE 1: ETHERNET CHIP ACCESS
Space 1 allows access to the KSZ8851-16 registers for debug purposes. All accesses are 16 bit.

Space 1 read with address NN45LLHH
Space 1 write with address NNC5LLHH
Space 1 read NN05
Space 1 write NN85

Example: read Ethernet chip CIDER register: 0145C000

```
01 = NN = read 1 16 bit value
45 = read space 1 with address included
C0 = LSB of CIDER address
00 = MSB of CIDER address
```

SPACE 2: ETHERNET EEPROM CHIP ACCESS
This space is used to store the Ethernet MAC address, card name, and EEPROM settable IP address. The Ethernet EEPROM space is accessed as 16 bit data. The first 0x20 bytes are read only and the remaining 0x60 bytes are read/write.

Space 2 read with address NN49LLHH
Space 2 write with address NNC9LLHH
Space 2 read NN09
Space 2 write NN89
REFERENCE INFORMATION

LBP16

SPACE2: ETHERNET EEPROM CHIP ACCESS

Writes and erases require that the EEPROMWEna be set to 5A02. *Note that EEPROMWEna is cleared at the end of every LPB packet so the write EEPROMWEna command needs to prepended to all EEPROM write and erase packets.* For EEPROM write operations a LBP16 read operation should follow the write(s) for host synchronization.

Example: write EEPROM IP address with 192:168.0.32 (C0:A8:0:20 in hex)

01D91A00025A Enable EEPROM area writes

82C920002000A8C0 Write 2 words to 0020 : C0A80020 (with inc). Note this must be in the same packet and the EEPROMWEna write

ETHERNET EEPROM LAYOUT

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Reserved RO</td>
</tr>
<tr>
<td>0002</td>
<td>MAC address LS Word RO</td>
</tr>
<tr>
<td>0004</td>
<td>MAC address Mid Word RO</td>
</tr>
<tr>
<td>0006</td>
<td>MAC address MS Word RO</td>
</tr>
<tr>
<td>0008</td>
<td>Reserved RO</td>
</tr>
<tr>
<td>000A</td>
<td>Reserved RO</td>
</tr>
<tr>
<td>000C</td>
<td>Reserved RO</td>
</tr>
<tr>
<td>000E</td>
<td>Unused RO</td>
</tr>
</tbody>
</table>
REFERENCE INFORMATION

LBP16

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>CardNameChar-0,1 RO</td>
</tr>
<tr>
<td>0012</td>
<td>CardNameChar-2,3 RO</td>
</tr>
<tr>
<td>0014</td>
<td>CardNameChar-4,5 RO</td>
</tr>
<tr>
<td>0016</td>
<td>CardNameChar-6,7 RO</td>
</tr>
<tr>
<td>0018</td>
<td>CardNameChar-8,9 RO</td>
</tr>
<tr>
<td>001A</td>
<td>CardNameChar-10,11 RO</td>
</tr>
<tr>
<td>001C</td>
<td>CardNameChar-12,13 RO</td>
</tr>
<tr>
<td>001E</td>
<td>CardNameChar-14,15 RO</td>
</tr>
<tr>
<td>0020</td>
<td>EEPROM IP address LS word RW</td>
</tr>
<tr>
<td>0022</td>
<td>EEPROM IP address MS word RW</td>
</tr>
<tr>
<td>0024</td>
<td>EEPROM Netmask LS word RW (V16 and > firmware)</td>
</tr>
<tr>
<td>0026</td>
<td>EEPROM Netmask MS word RW (V16 and > firmware)</td>
</tr>
<tr>
<td>0028</td>
<td>DEBUG LED Mode (LS bit determines HostMot2 (0) or debug(1)) RW</td>
</tr>
<tr>
<td>002A</td>
<td>Reserved RW</td>
</tr>
<tr>
<td>002C</td>
<td>Reserved RW</td>
</tr>
<tr>
<td>002E</td>
<td>Reserved RW</td>
</tr>
<tr>
<td>0030..007E</td>
<td>Unused RW</td>
</tr>
</tbody>
</table>
REFERENCE INFORMATION
LBP16

SPACE 3: FPGA FLASH EEPROM CHIP ACCESS
Space 3 allows access to the FPGAs configuration flash memory. All flash memory access is 32 bit. Flash memory access is different from other memory spaces in that it is done indirectly via a 32 bit address pointer and 32 bit data port.

Space 3 read with address NN4ELLHH
Space 3 write with address NNCELLHHDDDDDDDD
Space 3 read NN0E
Space 3 write NN8E

FLASH MEMORY REGISTERS
Flash memory spaces have only 4 accessible registers:

ADDRESS DATA
0000 FL_ADDR 32 bit flash address register
0004 FL_DATA 32 bit flash data register
0008 FL_ID 32 bit read only flash ID register
000C SEC_ERASE 32 bit write only sector erase register

Unlike other memory spaces, flash memory space is accessed indirectly by writing the address register (FL_ADDR) and then reading or writing the data (FL_DATA). The flash byte address is automatically incremented by 4 each data access.

Note that reads can read all of flash memory with consecutive read operations but write operations can only write a flash page worth of data before the page write must be started. Also unless you are doing partial page writes, page write should always start on a page boundary.

The page write is started by writing the flash address, reading the flash address, reading flash data, reading flash ID or issuing a erase sector command. For host synchronization, a read operation should follow every sector erase or page write.
REFERENCE INFORMATION

LBP16

SPACE 3: FPGA FLASH EEPROM CHIP ACCESS

Example: read 1024 bytes (0100h doublewords) of flash space at address 00123456:

01CE000056341200 Write FL_ADDR (0000) with pointer (0x00123456)

404E0400 Issue read command (FL_DATA = 0004) With count of 0x40 double words (256 bytes). Note do not use LBP16 increment bit! Flash address always autoincremented

400E Next 0x40 doublewords = 256 bytes

400E Next 0x40 doublewords = 256 bytes

400E Next 0x40 doublewords = 256 bytes

Note that this is close to the maximum reads allowed in a single LBP packet (~1450 bytes)

Writes and erases require that the EEPROMWEna be set to 5A03. Note that EEPROMWEna is cleared at the end of every LPB packet so the write EEPROMWEna command needs to prepended to all flash write and erase packets. The following is written on separate lines for clarity but must all be in one packet for correct operation.

Example: Write a 256 byte page of flash memory starting at 0xC000:

01D91A000035A Write EEPROMWEna with 0x5A03

01CE000000C0000 Write flash address

40CE0400 Issue write flash data command with count

12345678 Doubleword 0

ABCD8888 Doubleword 1

FFFFFFFF Doubleword 63 (= 256 bytes)

014E0000 Read new address to commit write and so some data is returned for host synchronization (so host waits for write to complete)
REFERENCE INFORMATION

LBP16

SPACE 3: FPGA FLASH EEPROM CHIP ACCESS
Example: Erase flash sector 0x00010000:

01D91A00035A Write EEPROMWEna with 0x5A03
01CE00000000100 Write flash address with 0x 00010000
01CE0C0000000000 Write sector erase command (with dummy 32 bit data = 0)
014E0000 Read flash address for host synchronization (this will echo the address _after_ the sector is erased)
REFERENCE INFORMATION

LBP16

SPACE 4 LBP TIMER/UTILITY AREA
Address space 4 is for read/write access to LBP specific timing registers. All memory space 4 access is 16 bit.

<table>
<thead>
<tr>
<th>Space 4 read with address</th>
<th>NN51LLHH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space 4 write with address</td>
<td>NND1LLHHD</td>
</tr>
<tr>
<td>Space 4 read</td>
<td>NN11</td>
</tr>
<tr>
<td>Space 4 write</td>
<td>NN91D</td>
</tr>
</tbody>
</table>

MEMORY SPACE 4 LAYOUT:
ADDRESS DATA
0000 uSTimeStampReg
0002 WaituSReg
0004 HM2Timeout
0006 WaitForHM2RefTime
0008 WaitForHM2Timer1
000A WaitForHM2Timer2
000C WaitForHM2Timer3
000E WaitForHM2Timer4
0010..001E Scratch registers for any use

The uSTimeStamp register reads the free running hardware microsecond timer. It is useful for timing internal 7I92 operations. Writes to the uSTimeStamp register are a no-op. The WaituS register delays processing for the specified number of microseconds when written, (0 to 65535 uS) reads return the last wait time written. The HM2TimeOut register sets the timeout value for all WaitForHM2 times (0 to 65536 uS).

All the WaitForHM2Timer registers wait for the rising edge of the specified timer or reference output when read or written, write data is don’t care, and reads return the wait time in uS. The HM2TimeOut register places an upper bound on how long the WaitForHM2 operations will wait. HM2Timeouts set the HM2Timeout error bit in the error register.
REFERENCE INFORMATION

LBP16

SPACE 6 LBP STATUS/CONTROL AREA
Address space 6 is for read/write access to LBP specific control, status, and error registers. All memory space 6 access is 16 bit. The RXUDPCount and TXUDPCount can be used as sequence numbers to verify packet reception and transmission.

Space 6 read with address NN59LLHH
Space 6 write with address NND9LLHHDDDD
Space 6 read NN19
Space 6 write NN99DDDD

MEMORY SPACE 6 LAYOUT:
ADDRESS DATA
0000 ErrorReg
0002 LBPParseErrors
0004 LBPMemErrors
0006 LBPWriteErrors
0008 RXPktCount
000A RXUDPCount
000C RXBadCount
000E TXPktCount
0010 TXUDPCount
0012 TXBadCount
REFERENCE INFORMATION

LBP16

MEMORY SPACE 6 LAYOUT:

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0014</td>
<td>LEDMode</td>
</tr>
<tr>
<td>0016</td>
<td>DebugLEDPtr</td>
</tr>
<tr>
<td>0018</td>
<td>Scratch</td>
</tr>
<tr>
<td>001A</td>
<td>EEPROMWEna</td>
</tr>
<tr>
<td>001C</td>
<td>LBPReset</td>
</tr>
<tr>
<td>001E</td>
<td>FPGAICAP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>0014</th>
<th>0016</th>
<th>0018</th>
<th>001A</th>
<th>001C</th>
<th>001E</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>LEDMode</td>
<td>DebugLEDPtr</td>
<td>Scratch</td>
<td>EEPROMWEna</td>
<td>LBPReset</td>
<td>FPGAICAP</td>
</tr>
</tbody>
</table>

If LSb is 0, LEDs are "owned" by HostMot2, otherwise LEDs are local debug LEDs.

What variable in space 6 local debug LEDs show (default is RXPktCount).

Can be used for sequence numbers.

Must be set to 5A0N to enable EEPROM or flash writes or erases (N is memory space of EEPROM or flash). Note that this is cleared at the end of every packet.

Setting this to a non-zero value will do a full reset of the LBP16 firmware. The 7I92 will read its IP address jumpers and re-assign its IP address. The 7I92 will be unresponsive for as much as ½ of a second after this command.

FPGA ICAP-16 register to allow remote FPGA reload and other low level FPGA access.

ERROR REGISTER FORMAT

<table>
<thead>
<tr>
<th>BIT</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LBPParseError</td>
</tr>
<tr>
<td>1</td>
<td>LBPMemError</td>
</tr>
<tr>
<td>2</td>
<td>LBPWriteError</td>
</tr>
<tr>
<td>3</td>
<td>RXPacketErr</td>
</tr>
<tr>
<td>4</td>
<td>TXPacketErr</td>
</tr>
<tr>
<td>5</td>
<td>HM2TimeOutError</td>
</tr>
<tr>
<td>6..15</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
REFERENCE INFORMATION

LBP16

SPACE 7: LBP READ ONLY AREA
Memory space 7 is used for read only card information. Memory space 7 is accessed as 16 bit data.

Space 7 read with address NN5DLLHH
Space 7 read NN1D

MEMORY SPACE 7 LAYOUT:
ADDRESS DATA

0000 CardNameChar-0,1
0002 CardNameChar-2,3
0004 CardNameChar-4,5
0006 CardNameChar-6,7
0008 CardNameChar-8,9
000A CardNameChar-10,11
000C CardNameChar-12,13
000E CardNameChar-14,15
0010 LBPVersion
0012 FirmwareVersion
0014 Option Jumpers
0016 Reserved
0018 RecvStartTS 1 uSec timestamps
001A RecvDoneTS For performance monitoring
001C SendStartTS Send timestamps are
001E SendDoneTS from previous packet
ELBPCOM

ELBPCOM is a very simple demo program in Python (2.x) to allow simple checking of LBP16 host communication to the 7I92. ELBPCOM accepts hexadecimal LBP16 commands and data and returns hexadecimal results. Note that the timeout value will need to be increased to about 2 seconds to try flash sector erase commands.

```python
import socket
s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM, 0)
sip  = "192.168.1.121"
sport = 27181
s.settimeout(.2)
while(2 >0):
sdata = raw_input (">")
sdata = sdata.decode('hex')
s.sendto(sdata,(sip,sport))
try:
data,addr = s.recvfrom(1280)
print (">")+data.encode('hex')
extcept socket.timeout:
print ('No answer')
```

Sample run:

```
>01420001 ; read hostmot2 cookie at 0x100
> fecaaa55 ; 7I92 returns 0x55AACAFE

>82492000 ; read EEPROM IP address at 0x0020
> 450a5863 ; 63:58:0A:45 = 99.88.10.69
    (for example)

>01D91A00025A82C920000100a8C0 ; write EEPROM IP address
    (at 0x0020) with
    C0:A8:0:1 = 192.168.0.1
```
REFERENCE

SPECIFICATIONS

<table>
<thead>
<tr>
<th>POWER</th>
<th>MIN</th>
<th>MAX</th>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V POWER SUPPLY</td>
<td>4.5V</td>
<td>5.5V</td>
<td>P3 supplied 5V</td>
</tr>
<tr>
<td>5V POWER CONSUMPTION:</td>
<td>----</td>
<td>2A</td>
<td>P3 Connector limit, actual current depends on external 5V load.</td>
</tr>
<tr>
<td>5V POWER CONSUMPTION:</td>
<td>----</td>
<td>250 mA</td>
<td>No external load</td>
</tr>
<tr>
<td>MAX 5V CURRENT TO I/O CONNS</td>
<td>----</td>
<td>1000 mA</td>
<td>Each (PTC Limit)</td>
</tr>
<tr>
<td>TEMPERATURE RANGE -C version</td>
<td>0 °C</td>
<td>+70 °C</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE RANGE -I version</td>
<td>-40 °C</td>
<td>+85 °C</td>
<td></td>
</tr>
<tr>
<td>INPUT VOLTAGE 5V TOL MODE</td>
<td>-0.3V</td>
<td>7V</td>
<td></td>
</tr>
<tr>
<td>INPUT VOLTAGE 3.3V TOL MODE</td>
<td>-0.3V</td>
<td>4V</td>
<td></td>
</tr>
<tr>
<td>OUTPUT VOLTAGE 24 MA SINK</td>
<td>----</td>
<td>0.6V</td>
<td>FPGA outputs set for 24 MA drive</td>
</tr>
<tr>
<td>OUTPUT VOLTAGE 24 MA SOURCE</td>
<td>2.4V</td>
<td>----</td>
<td>FPGA outputs set for 24 MA drive</td>
</tr>
</tbody>
</table>